Una lámina uniforme de 5m de largo y 50 kilogramos de masa está sostenida horizontalmente por sus extremos mediante dos alambres verticales uno de acero (cuyo modulo de Young es ) y otro de cobre (cuyo modulo de Young es de . Cada alambre tiene 3 metros de longitud y de sección transversal. Calcula el cambio de longitud de cada alambre.
Nombra los siguientes alquenos:
a) ![\chemfig{CH_2=CH-CH(-[6]CH_2-CH_3)-CH_2-C\equiv C-CH=C(-[6]CH_3)-CH(-[6]CH_3)-CH_3} \chemfig{CH_2=CH-CH(-[6]CH_2-CH_3)-CH_2-C\equiv C-CH=C(-[6]CH_3)-CH(-[6]CH_3)-CH_3}](local/cache-TeX/4080f871968a8a522deaf56a0fe7c68f.png)
b) ![\chemfig{CH_3-CH=C(-[6]CH_3)-CH(-[6]CH_3)-C\equiv C-CH_2-CH(-[6]C_3H_7)-CH=C(-[6]CH_2-CH_3)-CH_3} \chemfig{CH_3-CH=C(-[6]CH_3)-CH(-[6]CH_3)-C\equiv C-CH_2-CH(-[6]C_3H_7)-CH=C(-[6]CH_2-CH_3)-CH_3}](local/cache-TeX/8dd6780c0d05cb1c69b3ce7ce7bf3ad8.png)
Ejercicios FyQ
![\chemfig{CH_3-CH(-[6]CH_3)-CH_2-CH(-[6]CH(-[4]CH_3)(-[6]CH_3))-C(-[2]CH_3)(-[6]CH_3)-CH_2-CH(-[6]CH_2-CH_3)-CH_3} \chemfig{CH_3-CH(-[6]CH_3)-CH_2-CH(-[6]CH(-[4]CH_3)(-[6]CH_3))-C(-[2]CH_3)(-[6]CH_3)-CH_2-CH(-[6]CH_2-CH_3)-CH_3}](local/cache-TeX/d25367914a0952a131cc18b6ef79d5ff.png)
![\chemfig{CH_3-CH_2-C(-[2]CH_3)(-[6]CH_3)-CH(-[6]CH_3)-CH(-[6]CH_2(-[6]CH_3))-C(-[2]CH(-[4]CH_3)(-[0]CH_3))(-[6]CH_2(-[6]CH_3))-CH_2-CH(-[6]CH_2-CH_3)-CH_2-CH_3} \chemfig{CH_3-CH_2-C(-[2]CH_3)(-[6]CH_3)-CH(-[6]CH_3)-CH(-[6]CH_2(-[6]CH_3))-C(-[2]CH(-[4]CH_3)(-[0]CH_3))(-[6]CH_2(-[6]CH_3))-CH_2-CH(-[6]CH_2-CH_3)-CH_2-CH_3}](local/cache-TeX/34a6db1a864137a42242bcca6ce58782.png)